3.4.69 \(\int \frac {(d+e x^2)^{3/2}}{x (a+b x^2+c x^4)} \, dx\) [369]

Optimal. Leaf size=346 \[ -\frac {d^{3/2} \tanh ^{-1}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d}}\right )}{a}-\frac {\left (a \sqrt {b^2-4 a c} e^2-c d \left (\sqrt {b^2-4 a c} d-4 a e\right )-b \left (c d^2+a e^2\right )\right ) \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {c} \sqrt {d+e x^2}}{\sqrt {2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e}}\right )}{\sqrt {2} a \sqrt {c} \sqrt {b^2-4 a c} \sqrt {2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e}}-\frac {\left (a \sqrt {b^2-4 a c} e^2-c d \left (\sqrt {b^2-4 a c} d+4 a e\right )+b \left (c d^2+a e^2\right )\right ) \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {c} \sqrt {d+e x^2}}{\sqrt {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}}\right )}{\sqrt {2} a \sqrt {c} \sqrt {b^2-4 a c} \sqrt {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}} \]

[Out]

-d^(3/2)*arctanh((e*x^2+d)^(1/2)/d^(1/2))/a-1/2*arctanh(2^(1/2)*c^(1/2)*(e*x^2+d)^(1/2)/(2*c*d-e*(b-(-4*a*c+b^
2)^(1/2)))^(1/2))*(-b*(a*e^2+c*d^2)+a*e^2*(-4*a*c+b^2)^(1/2)-c*d*(-4*a*e+d*(-4*a*c+b^2)^(1/2)))/a*2^(1/2)/c^(1
/2)/(-4*a*c+b^2)^(1/2)/(2*c*d-e*(b-(-4*a*c+b^2)^(1/2)))^(1/2)-1/2*arctanh(2^(1/2)*c^(1/2)*(e*x^2+d)^(1/2)/(2*c
*d-e*(b+(-4*a*c+b^2)^(1/2)))^(1/2))*(b*(a*e^2+c*d^2)+a*e^2*(-4*a*c+b^2)^(1/2)-c*d*(4*a*e+d*(-4*a*c+b^2)^(1/2))
)/a*2^(1/2)/c^(1/2)/(-4*a*c+b^2)^(1/2)/(2*c*d-e*(b+(-4*a*c+b^2)^(1/2)))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 1.10, antiderivative size = 346, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.207, Rules used = {1265, 911, 1301, 212, 1180, 214} \begin {gather*} -\frac {\left (-c d \left (d \sqrt {b^2-4 a c}-4 a e\right )+a e^2 \sqrt {b^2-4 a c}-b \left (a e^2+c d^2\right )\right ) \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {c} \sqrt {d+e x^2}}{\sqrt {2 c d-e \left (b-\sqrt {b^2-4 a c}\right )}}\right )}{\sqrt {2} a \sqrt {c} \sqrt {b^2-4 a c} \sqrt {2 c d-e \left (b-\sqrt {b^2-4 a c}\right )}}-\frac {\left (-c d \left (d \sqrt {b^2-4 a c}+4 a e\right )+a e^2 \sqrt {b^2-4 a c}+b \left (a e^2+c d^2\right )\right ) \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {c} \sqrt {d+e x^2}}{\sqrt {2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}}\right )}{\sqrt {2} a \sqrt {c} \sqrt {b^2-4 a c} \sqrt {2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}}-\frac {d^{3/2} \tanh ^{-1}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d}}\right )}{a} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x^2)^(3/2)/(x*(a + b*x^2 + c*x^4)),x]

[Out]

-((d^(3/2)*ArcTanh[Sqrt[d + e*x^2]/Sqrt[d]])/a) - ((a*Sqrt[b^2 - 4*a*c]*e^2 - c*d*(Sqrt[b^2 - 4*a*c]*d - 4*a*e
) - b*(c*d^2 + a*e^2))*ArcTanh[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x^2])/Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]])/(Sq
rt[2]*a*Sqrt[c]*Sqrt[b^2 - 4*a*c]*Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]) - ((a*Sqrt[b^2 - 4*a*c]*e^2 - c*d*(
Sqrt[b^2 - 4*a*c]*d + 4*a*e) + b*(c*d^2 + a*e^2))*ArcTanh[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x^2])/Sqrt[2*c*d - (b +
Sqrt[b^2 - 4*a*c])*e]])/(Sqrt[2]*a*Sqrt[c]*Sqrt[b^2 - 4*a*c]*Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 911

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :
> With[{q = Denominator[m]}, Dist[q/e, Subst[Int[x^(q*(m + 1) - 1)*((e*f - d*g)/e + g*(x^q/e))^n*((c*d^2 - b*d
*e + a*e^2)/e^2 - (2*c*d - b*e)*(x^q/e^2) + c*(x^(2*q)/e^2))^p, x], x, (d + e*x)^(1/q)], x]] /; FreeQ[{a, b, c
, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IntegersQ[n,
 p] && FractionQ[m]

Rule 1180

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 1265

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2,
Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x] &&
 IntegerQ[(m - 1)/2]

Rule 1301

Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.))/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Int[Ex
pandIntegrand[(f*x)^m*((d + e*x^2)^q/(a + b*x^2 + c*x^4)), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b^
2 - 4*a*c, 0] && IntegerQ[q] && IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {\left (d+e x^2\right )^{3/2}}{x \left (a+b x^2+c x^4\right )} \, dx &=\frac {1}{2} \text {Subst}\left (\int \frac {(d+e x)^{3/2}}{x \left (a+b x+c x^2\right )} \, dx,x,x^2\right )\\ &=\frac {\text {Subst}\left (\int \frac {x^4}{\left (-\frac {d}{e}+\frac {x^2}{e}\right ) \left (\frac {c d^2-b d e+a e^2}{e^2}-\frac {(2 c d-b e) x^2}{e^2}+\frac {c x^4}{e^2}\right )} \, dx,x,\sqrt {d+e x^2}\right )}{e}\\ &=\frac {\text {Subst}\left (\int \left (-\frac {d^2 e}{a \left (d-x^2\right )}+\frac {e \left (d \left (c d^2-b d e+a e^2\right )-\left (c d^2-a e^2\right ) x^2\right )}{a \left (c d^2-b d e+a e^2-(2 c d-b e) x^2+c x^4\right )}\right ) \, dx,x,\sqrt {d+e x^2}\right )}{e}\\ &=\frac {\text {Subst}\left (\int \frac {d \left (c d^2-b d e+a e^2\right )+\left (-c d^2+a e^2\right ) x^2}{c d^2-b d e+a e^2+(-2 c d+b e) x^2+c x^4} \, dx,x,\sqrt {d+e x^2}\right )}{a}-\frac {d^2 \text {Subst}\left (\int \frac {1}{d-x^2} \, dx,x,\sqrt {d+e x^2}\right )}{a}\\ &=-\frac {d^{3/2} \tanh ^{-1}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d}}\right )}{a}+\frac {\left (a \sqrt {b^2-4 a c} e^2-c d \left (\sqrt {b^2-4 a c} d-4 a e\right )-b \left (c d^2+a e^2\right )\right ) \text {Subst}\left (\int \frac {1}{-\frac {1}{2} \sqrt {b^2-4 a c} e+\frac {1}{2} (-2 c d+b e)+c x^2} \, dx,x,\sqrt {d+e x^2}\right )}{2 a \sqrt {b^2-4 a c}}+\frac {\left (a \sqrt {b^2-4 a c} e^2-c d \left (\sqrt {b^2-4 a c} d+4 a e\right )+b \left (c d^2+a e^2\right )\right ) \text {Subst}\left (\int \frac {1}{\frac {1}{2} \sqrt {b^2-4 a c} e+\frac {1}{2} (-2 c d+b e)+c x^2} \, dx,x,\sqrt {d+e x^2}\right )}{2 a \sqrt {b^2-4 a c}}\\ &=-\frac {d^{3/2} \tanh ^{-1}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d}}\right )}{a}-\frac {\left (a \sqrt {b^2-4 a c} e^2-c d \left (\sqrt {b^2-4 a c} d-4 a e\right )-b \left (c d^2+a e^2\right )\right ) \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {c} \sqrt {d+e x^2}}{\sqrt {2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e}}\right )}{\sqrt {2} a \sqrt {c} \sqrt {b^2-4 a c} \sqrt {2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e}}-\frac {\left (a \sqrt {b^2-4 a c} e^2-c d \left (\sqrt {b^2-4 a c} d+4 a e\right )+b \left (c d^2+a e^2\right )\right ) \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {c} \sqrt {d+e x^2}}{\sqrt {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}}\right )}{\sqrt {2} a \sqrt {c} \sqrt {b^2-4 a c} \sqrt {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 1.27, size = 379, normalized size = 1.10 \begin {gather*} -\frac {\frac {\sqrt {2} \left (-a \sqrt {-b^2+4 a c} e^2+c d \left (\sqrt {-b^2+4 a c} d+4 i a e\right )-i b \left (c d^2+a e^2\right )\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} \sqrt {d+e x^2}}{\sqrt {-2 c d+b e-i \sqrt {-b^2+4 a c} e}}\right )}{\sqrt {c} \sqrt {-b^2+4 a c} \sqrt {-2 c d+\left (b-i \sqrt {-b^2+4 a c}\right ) e}}+\frac {\sqrt {2} \left (-a \sqrt {-b^2+4 a c} e^2+c d \left (\sqrt {-b^2+4 a c} d-4 i a e\right )+i b \left (c d^2+a e^2\right )\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} \sqrt {d+e x^2}}{\sqrt {-2 c d+b e+i \sqrt {-b^2+4 a c} e}}\right )}{\sqrt {c} \sqrt {-b^2+4 a c} \sqrt {-2 c d+\left (b+i \sqrt {-b^2+4 a c}\right ) e}}+2 d^{3/2} \tanh ^{-1}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d}}\right )}{2 a} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x^2)^(3/2)/(x*(a + b*x^2 + c*x^4)),x]

[Out]

-1/2*((Sqrt[2]*(-(a*Sqrt[-b^2 + 4*a*c]*e^2) + c*d*(Sqrt[-b^2 + 4*a*c]*d + (4*I)*a*e) - I*b*(c*d^2 + a*e^2))*Ar
cTan[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x^2])/Sqrt[-2*c*d + b*e - I*Sqrt[-b^2 + 4*a*c]*e]])/(Sqrt[c]*Sqrt[-b^2 + 4*a*
c]*Sqrt[-2*c*d + (b - I*Sqrt[-b^2 + 4*a*c])*e]) + (Sqrt[2]*(-(a*Sqrt[-b^2 + 4*a*c]*e^2) + c*d*(Sqrt[-b^2 + 4*a
*c]*d - (4*I)*a*e) + I*b*(c*d^2 + a*e^2))*ArcTan[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x^2])/Sqrt[-2*c*d + b*e + I*Sqrt[
-b^2 + 4*a*c]*e]])/(Sqrt[c]*Sqrt[-b^2 + 4*a*c]*Sqrt[-2*c*d + (b + I*Sqrt[-b^2 + 4*a*c])*e]) + 2*d^(3/2)*ArcTan
h[Sqrt[d + e*x^2]/Sqrt[d]])/a

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 0.13, size = 381, normalized size = 1.10

method result size
default \(-\frac {\frac {\left (\sqrt {e \,x^{2}+d}-\sqrt {e}\, x \right )^{3}}{24}+\frac {5 d \left (\sqrt {e \,x^{2}+d}-\sqrt {e}\, x \right )}{8}-\frac {\left (\munderset {\textit {\_R} =\RootOf \left (c \,\textit {\_Z}^{8}+\left (4 e b -4 c d \right ) \textit {\_Z}^{6}+\left (16 a \,e^{2}-8 d e b +6 c \,d^{2}\right ) \textit {\_Z}^{4}+\left (4 d^{2} e b -4 c \,d^{3}\right ) \textit {\_Z}^{2}+d^{4} c \right )}{\sum }\frac {\left (\left (a \,e^{2}-c \,d^{2}\right ) \textit {\_R}^{6}+d \left (5 a \,e^{2}-4 d e b +3 c \,d^{2}\right ) \textit {\_R}^{4}+d^{2} \left (-5 a \,e^{2}+4 d e b -3 c \,d^{2}\right ) \textit {\_R}^{2}-a \,d^{3} e^{2}+c \,d^{5}\right ) \ln \left (\sqrt {e \,x^{2}+d}-\sqrt {e}\, x -\textit {\_R} \right )}{\textit {\_R}^{7} c +3 \textit {\_R}^{5} b e -3 \textit {\_R}^{5} c d +8 \textit {\_R}^{3} a \,e^{2}-4 \textit {\_R}^{3} b d e +3 \textit {\_R}^{3} c \,d^{2}+\textit {\_R} b \,d^{2} e -\textit {\_R} c \,d^{3}}\right )}{4}+\frac {d^{3}}{24 \left (\sqrt {e \,x^{2}+d}-\sqrt {e}\, x \right )^{3}}+\frac {5 d^{2}}{8 \left (\sqrt {e \,x^{2}+d}-\sqrt {e}\, x \right )}}{a}+\frac {\frac {\left (e \,x^{2}+d \right )^{\frac {3}{2}}}{3}+d \left (\sqrt {e \,x^{2}+d}-\sqrt {d}\, \ln \left (\frac {2 d +2 \sqrt {d}\, \sqrt {e \,x^{2}+d}}{x}\right )\right )}{a}\) \(381\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)^(3/2)/x/(c*x^4+b*x^2+a),x,method=_RETURNVERBOSE)

[Out]

-1/a*(1/24*((e*x^2+d)^(1/2)-e^(1/2)*x)^3+5/8*d*((e*x^2+d)^(1/2)-e^(1/2)*x)-1/4*sum(((a*e^2-c*d^2)*_R^6+d*(5*a*
e^2-4*b*d*e+3*c*d^2)*_R^4+d^2*(-5*a*e^2+4*b*d*e-3*c*d^2)*_R^2-a*d^3*e^2+c*d^5)/(_R^7*c+3*_R^5*b*e-3*_R^5*c*d+8
*_R^3*a*e^2-4*_R^3*b*d*e+3*_R^3*c*d^2+_R*b*d^2*e-_R*c*d^3)*ln((e*x^2+d)^(1/2)-e^(1/2)*x-_R),_R=RootOf(c*_Z^8+(
4*b*e-4*c*d)*_Z^6+(16*a*e^2-8*b*d*e+6*c*d^2)*_Z^4+(4*b*d^2*e-4*c*d^3)*_Z^2+d^4*c))+1/24*d^3/((e*x^2+d)^(1/2)-e
^(1/2)*x)^3+5/8*d^2/((e*x^2+d)^(1/2)-e^(1/2)*x))+1/a*(1/3*(e*x^2+d)^(3/2)+d*((e*x^2+d)^(1/2)-d^(1/2)*ln((2*d+2
*d^(1/2)*(e*x^2+d)^(1/2))/x)))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^(3/2)/x/(c*x^4+b*x^2+a),x, algorithm="maxima")

[Out]

integrate((x^2*e + d)^(3/2)/((c*x^4 + b*x^2 + a)*x), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^(3/2)/x/(c*x^4+b*x^2+a),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (d + e x^{2}\right )^{\frac {3}{2}}}{x \left (a + b x^{2} + c x^{4}\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)**(3/2)/x/(c*x**4+b*x**2+a),x)

[Out]

Integral((d + e*x**2)**(3/2)/(x*(a + b*x**2 + c*x**4)), x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 827 vs. \(2 (298) = 596\).
time = 7.13, size = 827, normalized size = 2.39 \begin {gather*} \frac {d^{2} \arctan \left (\frac {\sqrt {x^{2} e + d}}{\sqrt {-d}}\right )}{a \sqrt {-d}} - \frac {{\left ({\left ({\left (b^{2} c - 4 \, a c^{2}\right )} d^{2} e - {\left (a b^{2} - 4 \, a^{2} c\right )} e^{3}\right )} \sqrt {-4 \, c^{2} d + 2 \, {\left (b c - \sqrt {b^{2} - 4 \, a c} c\right )} e} a^{2} - 2 \, {\left (\sqrt {b^{2} - 4 \, a c} a c^{2} d^{3} - \sqrt {b^{2} - 4 \, a c} a b c d^{2} e + \sqrt {b^{2} - 4 \, a c} a^{2} c d e^{2}\right )} \sqrt {-4 \, c^{2} d + 2 \, {\left (b c - \sqrt {b^{2} - 4 \, a c} c\right )} e} {\left | a \right |} - {\left (2 \, a^{2} b c^{2} d^{3} + 6 \, a^{3} b c d e^{2} - a^{3} b^{2} e^{3} - {\left (a^{2} b^{2} c + 8 \, a^{3} c^{2}\right )} d^{2} e\right )} \sqrt {-4 \, c^{2} d + 2 \, {\left (b c - \sqrt {b^{2} - 4 \, a c} c\right )} e}\right )} \arctan \left (\frac {2 \, \sqrt {\frac {1}{2}} \sqrt {x^{2} e + d}}{\sqrt {-\frac {2 \, a c d - a b e + \sqrt {-4 \, {\left (a c d^{2} - a b d e + a^{2} e^{2}\right )} a c + {\left (2 \, a c d - a b e\right )}^{2}}}{a c}}}\right )}{8 \, {\left (\sqrt {b^{2} - 4 \, a c} a^{2} c^{2} d^{2} - \sqrt {b^{2} - 4 \, a c} a^{2} b c d e + \sqrt {b^{2} - 4 \, a c} a^{3} c e^{2}\right )} {\left | a \right |} {\left | c \right |}} + \frac {{\left ({\left ({\left (b^{2} c - 4 \, a c^{2}\right )} d^{2} e - {\left (a b^{2} - 4 \, a^{2} c\right )} e^{3}\right )} \sqrt {-4 \, c^{2} d + 2 \, {\left (b c + \sqrt {b^{2} - 4 \, a c} c\right )} e} a^{2} + 2 \, {\left (\sqrt {b^{2} - 4 \, a c} a c^{2} d^{3} - \sqrt {b^{2} - 4 \, a c} a b c d^{2} e + \sqrt {b^{2} - 4 \, a c} a^{2} c d e^{2}\right )} \sqrt {-4 \, c^{2} d + 2 \, {\left (b c + \sqrt {b^{2} - 4 \, a c} c\right )} e} {\left | a \right |} - {\left (2 \, a^{2} b c^{2} d^{3} + 6 \, a^{3} b c d e^{2} - a^{3} b^{2} e^{3} - {\left (a^{2} b^{2} c + 8 \, a^{3} c^{2}\right )} d^{2} e\right )} \sqrt {-4 \, c^{2} d + 2 \, {\left (b c + \sqrt {b^{2} - 4 \, a c} c\right )} e}\right )} \arctan \left (\frac {2 \, \sqrt {\frac {1}{2}} \sqrt {x^{2} e + d}}{\sqrt {-\frac {2 \, a c d - a b e - \sqrt {-4 \, {\left (a c d^{2} - a b d e + a^{2} e^{2}\right )} a c + {\left (2 \, a c d - a b e\right )}^{2}}}{a c}}}\right )}{8 \, {\left (\sqrt {b^{2} - 4 \, a c} a^{2} c^{2} d^{2} - \sqrt {b^{2} - 4 \, a c} a^{2} b c d e + \sqrt {b^{2} - 4 \, a c} a^{3} c e^{2}\right )} {\left | a \right |} {\left | c \right |}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^(3/2)/x/(c*x^4+b*x^2+a),x, algorithm="giac")

[Out]

d^2*arctan(sqrt(x^2*e + d)/sqrt(-d))/(a*sqrt(-d)) - 1/8*(((b^2*c - 4*a*c^2)*d^2*e - (a*b^2 - 4*a^2*c)*e^3)*sqr
t(-4*c^2*d + 2*(b*c - sqrt(b^2 - 4*a*c)*c)*e)*a^2 - 2*(sqrt(b^2 - 4*a*c)*a*c^2*d^3 - sqrt(b^2 - 4*a*c)*a*b*c*d
^2*e + sqrt(b^2 - 4*a*c)*a^2*c*d*e^2)*sqrt(-4*c^2*d + 2*(b*c - sqrt(b^2 - 4*a*c)*c)*e)*abs(a) - (2*a^2*b*c^2*d
^3 + 6*a^3*b*c*d*e^2 - a^3*b^2*e^3 - (a^2*b^2*c + 8*a^3*c^2)*d^2*e)*sqrt(-4*c^2*d + 2*(b*c - sqrt(b^2 - 4*a*c)
*c)*e))*arctan(2*sqrt(1/2)*sqrt(x^2*e + d)/sqrt(-(2*a*c*d - a*b*e + sqrt(-4*(a*c*d^2 - a*b*d*e + a^2*e^2)*a*c
+ (2*a*c*d - a*b*e)^2))/(a*c)))/((sqrt(b^2 - 4*a*c)*a^2*c^2*d^2 - sqrt(b^2 - 4*a*c)*a^2*b*c*d*e + sqrt(b^2 - 4
*a*c)*a^3*c*e^2)*abs(a)*abs(c)) + 1/8*(((b^2*c - 4*a*c^2)*d^2*e - (a*b^2 - 4*a^2*c)*e^3)*sqrt(-4*c^2*d + 2*(b*
c + sqrt(b^2 - 4*a*c)*c)*e)*a^2 + 2*(sqrt(b^2 - 4*a*c)*a*c^2*d^3 - sqrt(b^2 - 4*a*c)*a*b*c*d^2*e + sqrt(b^2 -
4*a*c)*a^2*c*d*e^2)*sqrt(-4*c^2*d + 2*(b*c + sqrt(b^2 - 4*a*c)*c)*e)*abs(a) - (2*a^2*b*c^2*d^3 + 6*a^3*b*c*d*e
^2 - a^3*b^2*e^3 - (a^2*b^2*c + 8*a^3*c^2)*d^2*e)*sqrt(-4*c^2*d + 2*(b*c + sqrt(b^2 - 4*a*c)*c)*e))*arctan(2*s
qrt(1/2)*sqrt(x^2*e + d)/sqrt(-(2*a*c*d - a*b*e - sqrt(-4*(a*c*d^2 - a*b*d*e + a^2*e^2)*a*c + (2*a*c*d - a*b*e
)^2))/(a*c)))/((sqrt(b^2 - 4*a*c)*a^2*c^2*d^2 - sqrt(b^2 - 4*a*c)*a^2*b*c*d*e + sqrt(b^2 - 4*a*c)*a^3*c*e^2)*a
bs(a)*abs(c))

________________________________________________________________________________________

Mupad [B]
time = 7.67, size = 2500, normalized size = 7.23 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x^2)^(3/2)/(x*(a + b*x^2 + c*x^4)),x)

[Out]

atan((((d + e*x^2)^(1/2)*(2*a^4*c*e^16 + 6*c^5*d^8*e^8 - 16*a*c^4*d^6*e^10 - 16*b*c^4*d^7*e^9 + 4*b^4*c*d^4*e^
12 + 16*a^2*c^3*d^4*e^12 + 8*a^3*c^2*d^2*e^14 + 24*b^2*c^3*d^6*e^10 - 16*b^3*c^2*d^5*e^11 - 8*a^3*b*c*d*e^15 -
 8*a*b^3*c*d^3*e^13 + 16*a*b^2*c^2*d^4*e^12 - 24*a^2*b*c^2*d^3*e^13 + 12*a^2*b^2*c*d^2*e^14) + (-(((4*b^4*c*d^
3 - 4*a^2*b^3*e^3 + 32*a^2*c^3*d^3 - 24*a*b^2*c^2*d^3 - 96*a^3*c^2*d*e^2 + 16*a^3*b*c*e^3 - 12*a*b^3*c*d^2*e +
 48*a^2*b*c^2*d^2*e + 24*a^2*b^2*c*d*e^2)^2/4 - (256*a^4*c^3 + 16*a^2*b^4*c - 128*a^3*b^2*c^2)*(a^3*e^6 + c^3*
d^6 - b^3*d^3*e^3 + 3*a*b^2*d^2*e^4 + 3*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4 + 3*b^2*c*d^4*e^2 - 3*a^2*b*d*e^5 - 3*
b*c^2*d^5*e - 6*a*b*c*d^3*e^3))^(1/2) - 2*b^4*c*d^3 + 2*a^2*b^3*e^3 - 16*a^2*c^3*d^3 + 12*a*b^2*c^2*d^3 + 48*a
^3*c^2*d*e^2 - 8*a^3*b*c*e^3 + 6*a*b^3*c*d^2*e - 24*a^2*b*c^2*d^2*e - 12*a^2*b^2*c*d*e^2)/(16*(16*a^4*c^3 + a^
2*b^4*c - 8*a^3*b^2*c^2)))^(1/2)*(((-(((4*b^4*c*d^3 - 4*a^2*b^3*e^3 + 32*a^2*c^3*d^3 - 24*a*b^2*c^2*d^3 - 96*a
^3*c^2*d*e^2 + 16*a^3*b*c*e^3 - 12*a*b^3*c*d^2*e + 48*a^2*b*c^2*d^2*e + 24*a^2*b^2*c*d*e^2)^2/4 - (256*a^4*c^3
 + 16*a^2*b^4*c - 128*a^3*b^2*c^2)*(a^3*e^6 + c^3*d^6 - b^3*d^3*e^3 + 3*a*b^2*d^2*e^4 + 3*a*c^2*d^4*e^2 + 3*a^
2*c*d^2*e^4 + 3*b^2*c*d^4*e^2 - 3*a^2*b*d*e^5 - 3*b*c^2*d^5*e - 6*a*b*c*d^3*e^3))^(1/2) - 2*b^4*c*d^3 + 2*a^2*
b^3*e^3 - 16*a^2*c^3*d^3 + 12*a*b^2*c^2*d^3 + 48*a^3*c^2*d*e^2 - 8*a^3*b*c*e^3 + 6*a*b^3*c*d^2*e - 24*a^2*b*c^
2*d^2*e - 12*a^2*b^2*c*d*e^2)/(16*(16*a^4*c^3 + a^2*b^4*c - 8*a^3*b^2*c^2)))^(1/2)*((d + e*x^2)^(1/2)*(-(((4*b
^4*c*d^3 - 4*a^2*b^3*e^3 + 32*a^2*c^3*d^3 - 24*a*b^2*c^2*d^3 - 96*a^3*c^2*d*e^2 + 16*a^3*b*c*e^3 - 12*a*b^3*c*
d^2*e + 48*a^2*b*c^2*d^2*e + 24*a^2*b^2*c*d*e^2)^2/4 - (256*a^4*c^3 + 16*a^2*b^4*c - 128*a^3*b^2*c^2)*(a^3*e^6
 + c^3*d^6 - b^3*d^3*e^3 + 3*a*b^2*d^2*e^4 + 3*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4 + 3*b^2*c*d^4*e^2 - 3*a^2*b*d*e
^5 - 3*b*c^2*d^5*e - 6*a*b*c*d^3*e^3))^(1/2) - 2*b^4*c*d^3 + 2*a^2*b^3*e^3 - 16*a^2*c^3*d^3 + 12*a*b^2*c^2*d^3
 + 48*a^3*c^2*d*e^2 - 8*a^3*b*c*e^3 + 6*a*b^3*c*d^2*e - 24*a^2*b*c^2*d^2*e - 12*a^2*b^2*c*d*e^2)/(16*(16*a^4*c
^3 + a^2*b^4*c - 8*a^3*b^2*c^2)))^(1/2)*(512*a^5*c^4*e^10 + 32*a^3*b^4*c^2*e^10 - 256*a^4*b^2*c^3*e^10 + 768*a
^4*c^5*d^2*e^8 + 64*a^2*b^4*c^3*d^2*e^8 - 448*a^3*b^2*c^4*d^2*e^8 - 896*a^4*b*c^4*d*e^9 - 64*a^2*b^5*c^2*d*e^9
 + 480*a^3*b^3*c^3*d*e^9) - 192*a^3*c^5*d^4*e^8 - 192*a^4*c^4*d^2*e^10 + 48*a^2*b^2*c^4*d^4*e^8 - 64*a^2*b^3*c
^3*d^3*e^9 + 16*a^2*b^4*c^2*d^2*e^10 - 16*a^3*b^2*c^3*d^2*e^10 + 64*a^4*b*c^3*d*e^11 + 256*a^3*b*c^4*d^3*e^9 -
 16*a^3*b^3*c^2*d*e^11) + (d + e*x^2)^(1/2)*(8*a^3*b^3*c*e^13 - 32*a^4*b*c^2*e^13 + 176*a^4*c^3*d*e^12 - 144*a
^2*c^5*d^5*e^8 + 224*a^3*c^4*d^3*e^10 - 16*b^4*c^3*d^5*e^8 + 16*b^5*c^2*d^4*e^9 + 48*a^2*b^2*c^3*d^3*e^10 + 11
2*a^2*b^3*c^2*d^2*e^11 - 16*a^2*b^4*c*d*e^12 + 96*a*b^2*c^4*d^5*e^8 - 80*a*b^3*c^3*d^4*e^9 - 32*a*b^4*c^2*d^3*
e^10 + 96*a^2*b*c^4*d^4*e^9 - 416*a^3*b*c^3*d^2*e^11 + 16*a^3*b^2*c^2*d*e^12))*(-(((4*b^4*c*d^3 - 4*a^2*b^3*e^
3 + 32*a^2*c^3*d^3 - 24*a*b^2*c^2*d^3 - 96*a^3*c^2*d*e^2 + 16*a^3*b*c*e^3 - 12*a*b^3*c*d^2*e + 48*a^2*b*c^2*d^
2*e + 24*a^2*b^2*c*d*e^2)^2/4 - (256*a^4*c^3 + 16*a^2*b^4*c - 128*a^3*b^2*c^2)*(a^3*e^6 + c^3*d^6 - b^3*d^3*e^
3 + 3*a*b^2*d^2*e^4 + 3*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4 + 3*b^2*c*d^4*e^2 - 3*a^2*b*d*e^5 - 3*b*c^2*d^5*e - 6*
a*b*c*d^3*e^3))^(1/2) - 2*b^4*c*d^3 + 2*a^2*b^3*e^3 - 16*a^2*c^3*d^3 + 12*a*b^2*c^2*d^3 + 48*a^3*c^2*d*e^2 - 8
*a^3*b*c*e^3 + 6*a*b^3*c*d^2*e - 24*a^2*b*c^2*d^2*e - 12*a^2*b^2*c*d*e^2)/(16*(16*a^4*c^3 + a^2*b^4*c - 8*a^3*
b^2*c^2)))^(1/2) + 12*a*c^5*d^7*e^8 + 4*a^4*c^2*d*e^14 - 84*a^2*c^4*d^5*e^10 - 92*a^3*c^3*d^3*e^12 - 4*b^2*c^4
*d^7*e^8 - 4*b^3*c^3*d^6*e^9 + 8*b^4*c^2*d^5*e^10 - 12*a^2*b^2*c^2*d^3*e^12 + 32*a*b*c^4*d^6*e^9 - 4*a^3*b^2*c
*d*e^14 - 36*a*b^2*c^3*d^5*e^10 - 20*a*b^3*c^2*d^4*e^11 + 160*a^2*b*c^3*d^4*e^11 + 4*a^2*b^3*c*d^2*e^13 + 16*a
^3*b*c^2*d^2*e^13))*(-(((4*b^4*c*d^3 - 4*a^2*b^3*e^3 + 32*a^2*c^3*d^3 - 24*a*b^2*c^2*d^3 - 96*a^3*c^2*d*e^2 +
16*a^3*b*c*e^3 - 12*a*b^3*c*d^2*e + 48*a^2*b*c^2*d^2*e + 24*a^2*b^2*c*d*e^2)^2/4 - (256*a^4*c^3 + 16*a^2*b^4*c
 - 128*a^3*b^2*c^2)*(a^3*e^6 + c^3*d^6 - b^3*d^3*e^3 + 3*a*b^2*d^2*e^4 + 3*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4 + 3
*b^2*c*d^4*e^2 - 3*a^2*b*d*e^5 - 3*b*c^2*d^5*e - 6*a*b*c*d^3*e^3))^(1/2) - 2*b^4*c*d^3 + 2*a^2*b^3*e^3 - 16*a^
2*c^3*d^3 + 12*a*b^2*c^2*d^3 + 48*a^3*c^2*d*e^2 - 8*a^3*b*c*e^3 + 6*a*b^3*c*d^2*e - 24*a^2*b*c^2*d^2*e - 12*a^
2*b^2*c*d*e^2)/(16*(16*a^4*c^3 + a^2*b^4*c - 8*a^3*b^2*c^2)))^(1/2)*1i + ((d + e*x^2)^(1/2)*(2*a^4*c*e^16 + 6*
c^5*d^8*e^8 - 16*a*c^4*d^6*e^10 - 16*b*c^4*d^7*e^9 + 4*b^4*c*d^4*e^12 + 16*a^2*c^3*d^4*e^12 + 8*a^3*c^2*d^2*e^
14 + 24*b^2*c^3*d^6*e^10 - 16*b^3*c^2*d^5*e^11 - 8*a^3*b*c*d*e^15 - 8*a*b^3*c*d^3*e^13 + 16*a*b^2*c^2*d^4*e^12
 - 24*a^2*b*c^2*d^3*e^13 + 12*a^2*b^2*c*d^2*e^14) + (-(((4*b^4*c*d^3 - 4*a^2*b^3*e^3 + 32*a^2*c^3*d^3 - 24*a*b
^2*c^2*d^3 - 96*a^3*c^2*d*e^2 + 16*a^3*b*c*e^3 - 12*a*b^3*c*d^2*e + 48*a^2*b*c^2*d^2*e + 24*a^2*b^2*c*d*e^2)^2
/4 - (256*a^4*c^3 + 16*a^2*b^4*c - 128*a^3*b^2*...

________________________________________________________________________________________